niimpy.exploration.setup_dataframe module
- niimpy.exploration.setup_dataframe.create_categorical_dataframe()[source]
Create a sample Pandas dataframe used by the test functions.
- Returns:
- dfpandas.DataFrame
Pandas dataframe containing sample data.
- niimpy.exploration.setup_dataframe.create_dataframe()[source]
Create a sample Pandas dataframe used by the test functions.
- Returns:
- dfpandas.DataFrame
Pandas dataframe containing sample data.
- niimpy.exploration.setup_dataframe.create_missing_dataframe(nrows, ncols, density=0.9, random_state=None, index_type=None, freq=None)[source]
Create a Pandas dataframe with random missingness.
- Parameters:
- nrowsint
Number of rows
- ncolsint
Number of columns
- density: float
Amount of available data
- random_state: float, optional
Random seed. If not given, default to 33.
- index_type: float, optional
Accepts the following values: “dt” for timestamp, “int” for integer.
- freq: string, optional:
Sampling frequency. This option is only available is index_type is “dt”.
- Returns:
- dfpandas.DataFrame
Pandas dataframe containing sample data with random missing rows.
- niimpy.exploration.setup_dataframe.create_timeindex_dataframe(nrows, ncols, random_state=None, freq=None)[source]
Create a datetime index Pandas dataframe
- Parameters:
- nrowsint
Number of rows
- ncolsint
Number of columns
- random_state: float, optional
Random seed. If not given, default to 33.
- freq: string, optional:
Sampling frequency.
- Returns
- ——-
- dfpandas.DataFrame
Pandas dataframe containing sample data with random missing rows.